PROBLEM SET 4

July 18, 2019

- (1) Let X be a compact complex manifold with a Kähler metric $g, E \to X$ a holomorphic vector bundle, and h Hermitian metric on E. Assume $\Theta_g(h) \ge cI$ for some c > 0.
 - (a) Show that for any $\phi \in L^2_{n,q}(g,h)$, there exists $v \in \Gamma(X, \wedge_X^{n,q} \otimes E)$ such that $\overline{\partial}v$, $\overline{\partial}^*v \in L^2_{n,q}(g,h)$ and $\Box v = \phi$ in the weak sense, i.e., for all $\eta \in \Gamma(X, \wedge_X^{n,q} \otimes E)$ smooth,

 $(\overline{\partial}v, \overline{\partial}\eta) + (\overline{\partial}^*v, \overline{\partial}^*\eta) = (\phi, \eta).$

- (b) Show that if $\overline{\partial}\phi = 0$ then $\overline{\partial}^*\overline{\partial}v = 0$ in the weak sense, $(\overline{\partial}v, \overline{\partial}\eta) = 0$ for smooth η .
- (c) From (b), prove Hörmander for compact complex manifolds.
- (2) Show that if X is a compact complex manifold and $L \to X$ is a holomorphic line bundle admitting a metric of positive curvature then
 - (a) X is Kähler, and
 - (b) Any \square -harmonic form is identically equal to 0.
- (3) Explani, using the complex geometry we have developed, the close relationship between dual connnections and formal adjoints.
- (4) Let X be a compact Kähler manifold, $E \to X$ a holomorphic vector bundle with Hermitian metric h. Assume $\Theta_g(h) \geq cI$. Let $\phi \in \Gamma(X, \wedge_X^{n,q} \otimes E)$ be a smooth form satisfying $\overline{\partial} \phi = 0$. Consider

$$\mathcal{A}_{\phi} := \{ \phi + \overline{\partial} \eta : \eta \in \Gamma(X, \wedge_X^{n, q} \otimes E) \}.$$

Find the element of \mathcal{A}_{ϕ} whose L^2 -norm is minimal.

(5) Let X be a compact complex manifold and $L \to X$ a holomorphic line bundle with a Hermitian metric h whose curvature is positive. Let $x_1, \ldots, x_n \in X$ be distinct points and $v_i \in L_{x_i}$, $1 \le i \le n$ be such that $h(v_i, v_i) = 1$. Show that there exists m sufficiently large and a holomorphic section s of $L^{\otimes m} \to X$ such that $s(x_i) = v_i$, $1 \le i \le n$.

1